ОПД.Ф.02.03 ТЕОРИЯ МАШИН И МЕХАНИЗМОВ
КИНЕМАТИЧЕСКИЙ И СИЛОВОЙ РАСЧЕТЫ РЫЧАЖНОГО
ШЕСТИЗВЕННИКА
Методические указания к расчетно-графической работе
Введение

Методические указания «Кинематический и силовой расчеты рычажного шестизвена» используются при выполнении расчетно-графической работы по теории механизмов и машин. В них рассмотрены следующие вопросы: структурный анализ механизма, определение скоростей и ускорений отдельных точек и звеньев механизма, силовой расчет, построение рычага Жуковского Н.Е. Приводятся схемы, формулы, алгоритмы решения задач.

Методические указания предназначены для студентов технических специальностей очной полной и сокращенной формы обучения.

Задание на расчетно-графическую работу

1. Число оборотов кривошипа η = 60 об/мин. Угловая скорость кривошипа ω₁ является постоянной.

2. Размеры звеньев:
 О₁А=0,15 м, АВ=0,2 м, ВС=0,5 м, ВО₂=0,185 м.
 Центры масс звеньев расположены по середине соответствующих звеньев.

3. Массы звеньев: m₁=1,5 кг, m₂=2 кг, m₃ = 2 кг, m₄=5 кг, m₅ = 5 кг.

4. Момент инерции относительно оси, проходящей через центр масс звена: Iₙ₁ = 0,056дₙ₁·i², Iₙ₂ = 0,066дₙ₂·i², Iₙ₃ = 0,056дₙ₃·i².

5. Рабочее усилие: F=40 Н.
1. Структурный анализ механизма

1.1. Структурная схема механизма.

1.2. Звенья механизма.

<table>
<thead>
<tr>
<th>Звено</th>
<th>Наименование</th>
<th>Подвижность</th>
<th>Число подвижных звеньев</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Кривошип</td>
<td>Подвижное</td>
<td>n=5</td>
</tr>
<tr>
<td>2</td>
<td>Шатун</td>
<td>Подвижное</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Коромысло</td>
<td>Подвижное</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Шатун</td>
<td>Подвижное</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Ползун</td>
<td>Подвижное</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Стойка</td>
<td>Неподвижное</td>
<td></td>
</tr>
</tbody>
</table>

1.3. Кинематические пары.

<table>
<thead>
<tr>
<th>№ п/п</th>
<th>Обозначение наструктурной схеме</th>
<th>Соединяемые звенья</th>
<th>Вид</th>
<th>Тип кинематической пары</th>
<th>Характер соприкосновения</th>
<th>Степень подвижности</th>
<th>Индекс</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>О1</td>
<td>1,6</td>
<td>Вращат.</td>
<td>В_О1(1,6)</td>
<td>Низшая</td>
<td>Одноподвижная</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>А</td>
<td>1,2</td>
<td>Вращат.</td>
<td>В_А(1,2)</td>
<td>Низшая</td>
<td>Одноподвижная</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>В</td>
<td>2,3</td>
<td>Вращат.</td>
<td>В_В(2,3)</td>
<td>Низшая</td>
<td>Одноподвижная</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>3,4</td>
<td>Вращат.</td>
<td>В_Б(3,4)</td>
<td>Низшая</td>
<td>Одноподвижная</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>С</td>
<td>4,5</td>
<td>Вращат.</td>
<td>В_С(4,5)</td>
<td>Низшая</td>
<td>Одноподвижная</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>C</td>
<td>5,6</td>
<td>Поступат.</td>
<td>П_С(5,6)</td>
<td>Низшая</td>
<td>Одноподвижная</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>О2</td>
<td>3,6</td>
<td>Вращат.</td>
<td>В_О2(3,6)</td>
<td>Низшая</td>
<td>Одноподвижная</td>
<td></td>
</tr>
</tbody>
</table>

Число одноподвижных кинематических пар \(p_1 = 7 \), число двух подвижных кинематических пар \(p_2 = 0 \).

1.4. Степень подвижности механизма.

\[
W = 3 \cdot n - 2 \cdot p_1 - p_2 = 3 \cdot 5 - 2 \cdot 7 - 0 = 1
\]
1.5. Строение групп Ассура.
1.5.1. Последняя группа Ассура.

II класс, 2 порядок, вид ВВП.
Степень подвижности: \(W = 3 \cdot n - 2 \cdot p_1 = 3 \cdot 2 - 2 \cdot 3 = 0 \).
Структурная формула: \(II \left(\frac{4,5}{B_B(3,4)B_C(4,5)T_R(5,6)} \right) \).

1.5.2. Предпоследняя группа Ассура.

II класс, 2 порядок, вид ВВВ.
Степень подвижности \(W = 3 \cdot n - 2 \cdot p_1 = 3 \cdot 2 - 2 \cdot 3 = 0 \).
Структурная формула: \(II \left(\frac{2,3}{B_A(1,2)B_B(2,3)B_O(3,6)} \right) \).

1.5.3. Начальный механизм.

I класс.
Степень подвижности \(W = 3 \cdot n - 2 \cdot p_1 = 3 \cdot 1 - 2 \cdot 1 = 1 \).
Структурная формула: \(I \left(\frac{1}{B_O(1,6)} \right) \).
1.6. Структурная формула всего механизма.

\[
I \left(\frac{1}{B_{O_1}(1,6)} \right) \rightarrow II \left(\frac{2.3}{B_A(1,2)B_B(2,3)B_{O_2}(3,6)} \right) \rightarrow II \left(\frac{4.5}{B_B(3,4)B_C(4,5)I_3(5,6)} \right).
\]

1.7. Класс всего механизма II, так как наивысший класс группы Ассура, входящей в данный механизм II.

2. Кинематический анализ механизма

2.1. Определение скоростей точек звеньев и угловых скоростей звеньев.

Построим кинематическую схему механизма в масштабе \(\mu_r = 0,005 \frac{j}{ii} \).

2.1.1. Определение угловой скорости кривошипа:

\[\omega_1 = \frac{\pi \cdot n}{30} = \frac{3,14 \cdot 60}{30} = 6,28 \text{ c}^{-1}. \]

2.1.2. Определение скорости точки A:

\[V_A = \omega_1 \cdot OA = 6,28 \cdot 0,15 = 0,94 \text{ i} / \bar{n}. \]

Вектор скорости \(\vec{V}_A \) перпендикулярен кривошипу \(OA \).

Выбираем масштаб плана скоростей \(\mu_r = 0,01 \frac{i}{c} \).

Найдём отрезок, изображающий вектор скорости \(\vec{V}_A \) на плане:

\[p_{1A} = \frac{V_A}{\mu_r} = \frac{0,94}{0,01} = 94 \text{ мм}. \]

Из полюса плана скоростей \(p_1 \) откладываем данный отрезок перпендикулярно \(OA \) в направлении угловой скорости \(\omega_1 \).

2.1.3. Определение скорости точки B:

Запишем векторное уравнение:

\[\vec{V}_B = \vec{V}_A + \vec{V}_{B_1}. \]

Направления векторов скоростей:

\[\vec{V}_B \perp BO_2, \quad \vec{V}_{B_1} \perp BA. \]

Продолжим строить план скоростей.

Из конца вектора \(\vec{V}_A \) (точка \(a \)) проводим направление вектора \(\vec{V}_{B_1} \). Из полюса (точка \(p_1 \)) проводим направление вектора \(\vec{V}_B \). На пересечении двух проведённых направлений получим точку \(b \). Измерив длины полученных отрезков и умножая их на масштаб \(\mu_r \), получим значения скоростей:

\[V_B = p_{1b} \cdot \mu_r = 92 \cdot 0,01 = 0,92 \text{ i} / \bar{n}; \]

\[V_{B_1} = a \cdot \mu_r = 31 \cdot 0,01 = 0,31 \text{ i} / \bar{n}. \]

2.1.4. Определение скорости точки C:

Запишем векторное уравнение:

\[\vec{V}_C = \vec{V}_B + \vec{V}_{CB}. \]

Направления векторов скоростей:

\[\vec{V}_C \parallel \vec{X} - \vec{X}, \quad \vec{V}_{CB} \perp CB. \]

Продолжим строить план скоростей.
Из конца вектора \(\overrightarrow{V_b} \) (точка \(b \)) проводим направление вектора \(\overrightarrow{V_{cb}} \). Из полюса (точка \(p_1 \)) проводим направление вектора \(\overrightarrow{V_c} \). На пересечении двух проведённых направлений получим точку \(c \). Измеряя длины полученных отрезков и умножая их на масштаб \(\mu_r \), получим значения скоростей:

\[
V_c = p_1 c \cdot \mu_r = 86 \cdot 0,01 = 0,86 \text{ м/с} \\
V_{cb} = cb \cdot \mu_r = 17 \cdot 0,01 = 0,17 \text{ м/с}
\]

2.1.5. Определение угловой скорости шатуна \(AB \):

\[
\omega_2 = \frac{V_{AB}}{AB} = \frac{0,31}{0,2} = 1,55 \text{ с}^{-1}
\]

Для определения направления \(\omega_2 \) переносим вектор \(\overrightarrow{V_{AB}} \) в точку \(B \) шатуна \(AB \) и смотрим как она движется относительно точки \(A \). Направление этого движения соответствует \(\omega_2 \). В данном случае угловая скорость \(\omega_2 \) направлена по часовой стрелке.

2.1.6. Определение угловой скорости коромысла \(BO_2 \):

\[
\omega_3 = \frac{V_{BO_2}}{BO_2} = \frac{0,92}{0,185} = 4,97 \text{ с}^{-1}
\]

Для определения направления \(\omega_3 \) переносим вектор \(\overrightarrow{V_{BO_2}} \) в точку \(B \) коромысла \(BO_2 \) и смотрим как она движется относительно точки \(O_2 \). Направление этого движения соответствует \(\omega_3 \). В данном случае угловая скорость \(\omega_3 \) направлена по часовой стрелке.

2.1.7. Определение угловой скорости шатуна \(BC \):

\[
\omega_4 = \frac{V_{cb}}{BC} = \frac{0,17}{0,5} = 0,34 \text{ с}^{-1}
\]

Для определения направления \(\omega_4 \) переносим вектор \(\overrightarrow{V_{cb}} \) в точку \(C \) шатуна \(CB \) и смотрим, как она движется относительно точки \(B \). Направление этого движения соответствует \(\omega_4 \). В данном случае угловая скорость \(\omega_4 \) направлена по часовой стрелке.
2.2. Определение ускорений точек звеньев и угловых ускорений звеньев

2.2.1. Определение ускорения точки А:
Так как угловая скорость ω_1 является постоянной, то $\vec{a}_A = \omega_1^2 \cdot \vec{O}_1 A$.

$\vec{a}_A = \omega_1^2 \cdot O_1 A = 6,28^2 \cdot 0,15 = 5,9 \text{i} / \text{c}^2$. Вектор ускорения \vec{a}_A направлен параллельно кривошипу $O_1 A$ от точки A к точке O_1.

Выбираем масштаб плана ускорений $\mu_u = 0,05 \text{MM} \text{c}^2$. Найдём отрезок, изображающий вектор ускорения \vec{a}_A на плане: $p_a = \frac{a_A}{\mu_u} = \frac{5,9}{0,05} = 118 \text{i}$. Из полюса плана ускорений p_a откладываем данный отрезок в направлении, параллельном AO_1.

2.2.2. Определение ускорения точки Б:
Запишем векторное уравнение: $\vec{a}_B = \vec{a}_A + \vec{a}_{B_1}$.
Вектор относительного ускорения \mathbf{a}_{B4} раскладываем на нормальную и касательную составляющие: $\mathbf{a}_{B4} = a^N_{B4} + a^T_{B4}$.

Нормальное относительное ускорение равно: $a^N_{B4} = \omega^2 \cdot AB = 1,55^2 \cdot 0,2 = 0,48 \ i / \vec{n}^2$.

Найдём отрезок, изображающий вектор ускорения a^N_{B4} на плане:
$$an = \frac{a^N_{B4}}{\mu_a} = \frac{0,48}{0,05} = 9,6ii.$$

Продолжаем строить план ускорений. Вектор ускорения \mathbf{a}^T_{B4} направлен параллельно AB. Откладываем отрезок an из точки a плана ускорений в указанном направлении от точки B к точке A.

Вектор ускорения \mathbf{a}_{B4} направлен перпендикулярно AB. Проводим это направление из точки B плана ускорений.

Вектор ускорения \mathbf{a}_{B4} раскладываем на нормальную и касательную составляющие: $\mathbf{a}_{B4} = a^N_{B4} + a^T_{B4}$.

Нормальное ускорение равно: $a^N_{B4} = \omega^2 \cdot BO_2 = 4,97^2 \cdot 0,185 = 4,57 \ i / \vec{n}^2$.

Найдём отрезок, изображающий вектор ускорения \mathbf{a}_{B4} на плане:
$$p owl = \frac{a^N_{B4}}{\mu_o} = \frac{4,57}{0,05} = 91ii.$$

Продолжаем строить план ускорений. Вектор ускорения \mathbf{a}^T_{B4} направлен параллельно BO_2. Откладываем отрезок p_owl из точки p_owl плана ускорений в указанном направлении от точки B к точке O_2. Вектор ускорения \mathbf{a}_{B4} направлен перпендикулярно BO_2. Проводим это направление из точки m плана ускорений. Две прямые линии, проведённые из точек n и m в указанных направлениях, пересекаются в точке b.

Найдём величины ускорений. Измеряя длины полученных отрезков и умножая их на масштаб μ_a, получим:
$$a^\prime_B = \frac{m \cdot \mu_a}{\mu_a} = 27 \cdot 0,05 = 1,35 \ i / \vec{n}^2;$$
$$a_b = \frac{p \cdot \mu_o}{\mu_o} = 95 \cdot 0,05 = 4,75 \ i / \vec{n}^2;$$
$$a^\prime_{B4} = \frac{n \cdot \mu_o}{\mu_o} = 41 \cdot 0,05 = 1,05 \ i / \vec{n}^2;$$
$$a_{B4} = \frac{m \cdot \mu_o}{\mu_o} = 23 \cdot 0,05 = 1,15 \ i / \vec{n}^2.$$

2.2.3. Определение ускорения точки C:
Запишем векторное уравнение: $\mathbf{a}_{C} = a_B + a_{CB}$.

Вектор относительного ускорения \mathbf{a}_{CB} раскладываем на нормальную и касательную составляющие: $\mathbf{a}_{CB} = a^N_{CB} + a^T_{CB}$.

Нормальное относительное ускорение равно:
$$a^N_{CB} = \omega^3 \cdot BC = 0,34^3 \cdot 0,5 = 0,058 \ i / \vec{n}^2.$$
Найдём отрезок, изображающий вектор ускорения \(\overrightarrow{a_{CB}} \) на плоскости:

\[
bk = \frac{\alpha_{CB}}{\mu_a} = \frac{0.05}{0.05} = 1i.
\]

Продолжаем строить план ускорений. Так как отрезок \(bk \) мал, то его на плоске ускорений не откладываем. Точки \(b \) и \(k \) совпадают.

Вектор ускорения \(\overrightarrow{a_{CB}} \) направлен перпендикулярно \(BC \). Проводим это направление из точки \(k \) плоска ускорений.

Вектор ускорения \(a_c \) направлен параллельно оси \(X - X \). Проводим это направление из полюса \(p_a \). Две прямые линии, проведённые из точек \(k \) и \(p_a \) в указанных направлениях, пересекаются в точке \(c \).

Найдем величины ускорений. Измеряя длины полученных отрезков и умножая их на масштаб \(\mu_a \), получим:

\[
a_c = p_a \cdot c \cdot \mu_a = 65 \cdot 0.05 = 3.25 i / \vec{h}^2 ;
\]

\[
a_{CB} = k \cdot c \cdot \mu_a = 88 \cdot 0.05 = 4.4 i / \vec{h}^2 ;
\]

\[
a_{CB} = c \cdot b \cdot \mu_a = 88 \cdot 0.05 = 4.4 i / \vec{h}^2 .
\]

2.2.4. Определение ускорения точки \(S_1 \):

\[
a_{S_1} = \omega^2 \cdot AS_1 = 6,28^2 \cdot 0.075 = 2.95 i / c^2 .
\]

Вектор ускорения \(\overrightarrow{a_{S_1}} \) направлен параллельно кривошипу \(O_1 A \) от точки \(S_1 \) к точке \(O_1 \).

2.2.5. Определение ускорения точки \(S_2 \):

Воспользуемся следствием из теоремы подобия. Составим пропорцию:

\[
\frac{AB}{AS_2} = \frac{ab}{as_2}, \quad \frac{ab \cdot AS_1}{AB} = \frac{23 \cdot 100}{200} = 11.5i .
\]

Данный отрезок откладываем на прямой \(ab \) от точки \(a \). Точку \(s_2 \) соединяем с полюсом \(p_a \).

Величина ускорения: \(a_{s_2} = p_a \cdot s_2 \cdot \mu_a = 5.35 i / \vec{h}^2 .
\)

2.2.6. Определение ускорения точки \(S_3 \):

Воспользуемся следствием из теоремы подобия. Составим пропорцию:

\[
\frac{BO_2}{BS_3} = \frac{p_a \cdot b}{bs_3}, \quad \frac{BS_3 \cdot BS_1}{BO_2} = \frac{95 \cdot 92.5}{185} = 47.5i .
\]

Данный отрезок откладываем на прямой \(p_a b \) от точки \(b \). Точку \(s_3 \) соединяем с полюсом \(p_a \).

Величина ускорения: \(a_{s_3} = p_a \cdot s_3 \cdot \mu_a = 48 \cdot 0.05 = 2.4 i / \vec{h}^2 .
\)

2.2.7. Определение ускорения точки \(S_4 \):

Воспользуемся следствием из теоремы подобия. Составим пропорцию:

\[
\frac{BC}{BS_4} = \frac{bc}{bs_4}, \quad \frac{bc \cdot BS_1}{BC} = \frac{88 \cdot 250}{500} = 44i .
\]

Данный отрезок откладываем на прямой \(bc \) от точки \(b \). Точку \(s_4 \) соединяем с полюсом \(p_a \).

Величина ускорения: \(a_{s_4} = p_a \cdot s_4 \cdot \mu_a = 69 \cdot 0.05 = 3.45 i / \vec{h}^2 .
\)

2.2.8. Определение углового ускорения шатуна \(AB \):

\[
\varepsilon_2 = \frac{a_{BA}}{AB} = \frac{1.05}{0.2} = 5.25 \frac{i}{\vec{h}^2} .
\]
Для определения направления \(\varepsilon_2 \) переносим вектор \(\overrightarrow{a_{B A}} \) в точку \(B \) шатуна \(AB \) и смотрим, как она движется относительно точки \(A \). Направление этого движения соответствует \(\varepsilon_2 \). В данном случае угловое ускорение \(\varepsilon_2 \) направлено против часовой стрелки.

2.2.9. Определение углового ускорения коромысла \(BO_2 \):

\[
\varepsilon_3 = \frac{a_{B A}^r}{BO_2} = \frac{1,35}{0,185} = 25,7 \text{ рад}^2.
\]

Для определения направления \(\varepsilon_3 \) переносим вектор \(\overrightarrow{BO_2} \) в точку \(B \) коромысла \(BO_2 \) и смотрим, как она движется относительно точки \(O_2 \). Направление этого движения соответствует \(\varepsilon_3 \). В данном случае угловое ускорение \(\varepsilon_3 \) направлено по часовой стрелке.

2.2.10. Определение углового ускорения шатуна \(BC \):

\[
\varepsilon_4 = \frac{a_{C B}^r}{BC} = \frac{4,4}{0,2} = 22 \text{ рад}^2.
\]

Для определения направления \(\varepsilon_4 \) переносим вектор \(\overrightarrow{C B} \) в точку \(C \) шатуна \(BC \) и смотрим, как она движется относительно точки \(B \). Направление этого движения соответствует \(\varepsilon_4 \) направлено против часовой стрелки.

<table>
<thead>
<tr>
<th>Исследуемая величина</th>
<th>Отрезок на плане</th>
<th>Направление</th>
<th>Величина отрезка на плане, мм</th>
<th>Масштабный коэффициент (\mu_0)</th>
<th>Значение величины, (\text{м} / \text{с}^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a_A)</td>
<td>(p_1a)</td>
<td>(\overrightarrow{A} \parallel AO_1)</td>
<td>118</td>
<td>5,9</td>
<td></td>
</tr>
<tr>
<td>(a_{B A}^n)</td>
<td>(\overrightarrow{B} \parallel AB)</td>
<td>10</td>
<td>0,48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(a_{B A}^r)</td>
<td>(\overrightarrow{B} \perp AB)</td>
<td>21</td>
<td>1,05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(a_{B A})</td>
<td>(ab)</td>
<td>23</td>
<td>1,15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(a_B^r)</td>
<td>(p_1m)</td>
<td>(\overrightarrow{B} \parallel BO_1)</td>
<td>91</td>
<td>4,57</td>
<td></td>
</tr>
<tr>
<td>(a_B^r)</td>
<td>(mb)</td>
<td>(\overrightarrow{B} \perp BO_2)</td>
<td>27</td>
<td>1,35</td>
<td></td>
</tr>
<tr>
<td>(a_B)</td>
<td>(p_2b)</td>
<td>95</td>
<td>4,75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(a_{C B}^n)</td>
<td>(bk)</td>
<td>(\overrightarrow{C} \parallel CB)</td>
<td>1</td>
<td>0,058</td>
<td></td>
</tr>
<tr>
<td>(a_{C B}^r)</td>
<td>(ck)</td>
<td>(\overrightarrow{C} \perp CB)</td>
<td>88</td>
<td>4,4</td>
<td></td>
</tr>
<tr>
<td>(a_{C B})</td>
<td>(bc)</td>
<td>88</td>
<td>4,4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(a_C)</td>
<td>(p_3c)</td>
<td>(\overrightarrow{C} \parallel X - X)</td>
<td>65</td>
<td>3,25</td>
<td></td>
</tr>
<tr>
<td>(a_{S_1})</td>
<td>(p_1s_1)</td>
<td>(\overrightarrow{S_1} \parallel AO_1)</td>
<td>59</td>
<td>2,95</td>
<td></td>
</tr>
<tr>
<td>(a_{S_2})</td>
<td>(p_2s_2)</td>
<td>107</td>
<td>5,35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(a_{S_3})</td>
<td>(p_3s_3)</td>
<td>48</td>
<td>2,4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(a_{S_4})</td>
<td>(p_4s_4)</td>
<td>69</td>
<td>3,45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\varepsilon_2)</td>
<td>Против часовой стрелки</td>
<td></td>
<td>5,25 (\text{с}^2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\varepsilon_3)</td>
<td>По часовой стрелке</td>
<td></td>
<td>25,68 (\text{с}^2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\varepsilon_4)</td>
<td>Против часовой стрелки</td>
<td></td>
<td>2,2 (\text{с}^2)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Кинематическая схема механизма $i = 0,005 \frac{i}{i}$

План ускорений $i = 0,05 \frac{i}{i}$
3. Силовой расчет механизма

3.1. Силовой расчет последней группы Ассура вида ВВП

3.1.1. Определение сил тяжести звеньев:

\[G_4 = m_4 \cdot g = 5 \cdot 9,8 = 49 \dot{I} \] , \[G_5 = m_5 \cdot g = 5 \cdot 9,8 = 49 \dot{I} \] .

3.1.2. Определение сил инерции:

\[F_{s_4} = m_4 \cdot a_{s_4} = 5 \cdot 3,45 = 17,25 \dot{I} \] , \[F_{s_5} = m_5 \cdot a_{s_5} = 5 \cdot 3,25 = 16,25 \dot{I} \] .

Силы инерции направлены в противоположную сторону соответствующим ускорениям центров масс звеньев.

3.1.3. Определение момента инерции:

\[M_{s_4} = I_{s_4} \cdot e_{s_4} = 0,05 \cdot 2,2 = 0,11 \dot{I} \cdot \dot{I} \] ;

Момент инерции направлен в противоположную сторону угловому ускорению \(e_{s_4} \).

Построим группу Ассура в масштабе \(\mu_i \).

Покажем все действующие на нее силы и неизвестные реакции \(R_{s_5} \), \(R_{s_4}^C \), \(R_{s_4}^W \).

3.1.4. Определением реакции \(R_{s_4}^C \):

Составим уравнение моментов всех сил, действующих на звено 4, относительно точки C.

\[\sum_{i=1}^{n} M_{c_i} = 0; \quad -R_{s_4}^C \cdot BC - F_{s_4} \cdot h_2 + G_4 \cdot h_1 - M_{s_4} = 0. \]

Найдем реакцию \(R_{s_4}^C \).

\[R_{s_4}^C = - \frac{F_{s_4} \cdot h_2 + G_4 \cdot h_1 - M_{s_4}}{BC} = -17,25 \cdot 0,095 + 49 \cdot 0,245 - 0,11 \frac{0,5}{0,05} = 20,5 H. \]

Длины плеч \(h_1 \) и \(h_2 \) измерены на расчетной схеме и умножены на масштабный коэффициент \(\mu_i = 0,005 \dot{I} / i \dot{I} \).

\[h_1 = 49 \cdot 0,005 = 0,245 i \] ; \[h_2 = 19 \cdot 0,005 = 0,995 i \] .

3.1.5. Определение реакции \(R_{s_5}^C \) и \(R_{s_5} \):

Составим векторное уравнение равновесия всех сил, действующих на всю группу Ассура.

\[\sum_{i=1}^{n} \vec{F}_i = 0; \quad R_{s_4}^C + R_{s_5}^C + \vec{F} + \vec{G}_4 + \vec{G}_5 + \vec{F}_{s_4} + \vec{F}_{s_5} + R_{s_5} = 0. \]

Выберем масштаб плана сил \(\mu_F = 1 \dot{I} / i \dot{I} \).

Вычислим величины отрезков, соответствующих векторам сил. Данные занесем в табл. 1:

<table>
<thead>
<tr>
<th>Обозначение силы</th>
<th>(G_4)</th>
<th>(G_5)</th>
<th>(F_{s_4})</th>
<th>(F_{s_5})</th>
<th>(F)</th>
<th>(R_{s_4}^C)</th>
<th>(R_{s_5}^C)</th>
<th>(R_{s_4}^W)</th>
<th>(R_{s_5})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Величина силы, H</td>
<td>49</td>
<td>49</td>
<td>17,25</td>
<td>16,25</td>
<td>40</td>
<td>20,5</td>
<td>17</td>
<td>27</td>
<td>62</td>
</tr>
<tr>
<td>Отрезок на плане, мм</td>
<td>49</td>
<td>49</td>
<td>17</td>
<td>16</td>
<td>40</td>
<td>21</td>
<td>17</td>
<td>27</td>
<td>62</td>
</tr>
</tbody>
</table>

Таблица 1

Строим план сил. В соответствии с векторным уравнением откладываем отрезки, соответствующие векторам \(\vec{R}_{s_4}^C, \vec{F}, \vec{G}_4, \vec{G}_5, \vec{F}_{s_4}, \vec{F}_{s_5} \). Векторы можно откладывать в
любом порядке, но обязательно начать построение с вектора R_{34}^t. Затем из начала вектора R_{34}^t проводим направление вектора R_{45}^n, а из конца последнего вектора проводим направление вектора R_{56}^r. Пересекаясь, эти направления замыкают многоугольник сил.

Измеря на плане сил отрезки, соответствующие векторам R_{34}^t, R_{45}^n, R_{56}^r и умножая их на масштаб μ_F, получим значение этих реакций. Данные занесены в табл. 1.

3.1.6. Определим реакцию R_{56}^r.
Составим векторное уравнение равновесия всех сил, действующих звено 4.
$$\sum_{j=1}^n F_j = 0; \quad G_4 + F_{u_4} + R_{34}^t + R_{56}^r = 0.$$

Выберем масштаб плана сил $\mu_F = 1/111$. Строим план сил. В соответствии с векторным уравнением откладываем отрезки, соответствующие векторам G_4, F_{u_4}, R_{34}^t. Векторы можно откладывать в любом порядке. Соединяя начало первого вектора и конец последнего, получим многоугольник сил и отрезок, определяющий реакцию R_{56}^r. Измеря его длину и умножая на масштаб μ_F, получим величину реакции R_{56}^r.

3.2. Силовой расчет предпоследней группы Ассура вида ВВВ.
3.2.1. Определение сил тяжести звеньев:
$$G_1 = m_1 \cdot g = 2 \cdot 9,8 = 19,6; \quad G_2 = m_2 \cdot g = 2 \cdot 9,8 = 19,6.$$

3.2.2. Определение сил инерции:
$$F_{e_2} = m_2 \cdot a_{e_2} = 2 \cdot 5,35 = 10,7; \quad F_{e_3} = m_3 \cdot a_{e_3} = 2 \cdot 2,4 = 4,8.$$

Силы инерции направлены в противоположную сторону соответствующим ускорениям центров масс звеньев.

3.2.3. Определение моментов инерции:
$$M_{e_2} = I_{e_2} \cdot e_2 = 0,05 \cdot 5,25 = 0,26; \quad M_{e_3} = I_{e_3} \cdot e_3 = 0,06 \cdot 25,68 = 1,54.$$

Моменты инерции направлены в противоположные стороны соответствующим угловым ускорениям.

Построим группу Ассура в масштабе μ.

Показаем все действующие на нее силы (в том числе реакцию $R_{56}^r = -R_{34}^t$) и неизвестные реакции R_{12}^r, R_{25}^r, R_{56}^r, R_{34}^t.

3.2.4. Определим реакцию R_{12}^r.
Составим уравнение моментов всех сил, действующих на звено 2, относительно точки B.
$$\sum_{i=1}^n M_i = 0; \quad -R_{12}^r \cdot AB - F_{u_2} \cdot h_6 + G_2 \cdot h_3 - M_{e_2} = 0.$$

Найдем реакцию R_{12}^r:
$$R_{12}^r = -\frac{-F_{u_2} \cdot h_6 + G_2 \cdot h_3 - M_{e_2}}{AB} = \frac{-10,7 \cdot 0,1 + 19,6 \cdot 0,095 - 0,26}{0,2} = 2,66 H.$$

Длины плеч h_5 и h_6 измерены на расчетной схеме и умножены на масштабный коэффициент $\mu = 0,005 i/111 i$.

$h_5 = 19 \cdot 0,005 = 0,095 i; \quad h_6 = 20 \cdot 0,005 = 0,11 i.$
Последняя группа Ассура вида ВВП \(\mu_i = 0.005 \) i i

План сил для группы Ассура \(\mu_f = \frac{1}{i} \) i i План сил для звена 4 \(\mu_c = \frac{1}{i} \) i i
3.2.5. Определим реакцию \(R_{63}^r \).

Составим уравнение моментов всех сил, действующих на звено 3, относительно точки \(B \).

\[
\sum_{i=1}^{n} M_{B,i} = 0; \quad -R_{63}^r \cdot BO_2 - F_{u_3} \cdot h_3 - G_3 \cdot h_4 + M_{u_3} = 0.
\]

Найдем реакцию \(R_{63}^r \).

\[
R_{63}^r = \frac{-F_{u_3} \cdot h_3 - G_3 \cdot h_4 + M_{u_3}}{BO_2} = \frac{-4,8 \cdot 0,025 - 19,6 \cdot 0,02 + 1,54}{0,2} = 5,56 H.
\]

Длины плеч \(h_3 \) и \(h_4 \) измерены на расчетной схеме и умножены на масштабный коэффициент \(\mu_i = 0,005 \frac{i}{10} \).

\(h_3 = 5 \cdot 0,005 = 0,025 i \); \(h_4 = 4 \cdot 0,005 = 0,02 i \).

3.2.6. Определим реакцию \(R_{63}^u \) и \(R_{12}^u \).

Составим векторное уравнение равновесия всех сил, действующих на всю группу.

\[
\sum_{i=1}^{n} \overrightarrow{F_i} = 0; \quad \overrightarrow{R_{63}^u} + \overrightarrow{R_{63}^r} + \overrightarrow{G_2} + \overrightarrow{G_3} + \overrightarrow{F_{u_3}} + \overrightarrow{F_{u_4}} + \overrightarrow{R_{12}^r} + \overrightarrow{R_{12}^u} + \overrightarrow{R_{63}^u} = 0.
\]

Выберем масштаб плана сил \(\mu_p = 0,5 \frac{i}{10} \).

Вычислим величины отрезков, соответствующих векторам сил. Данные занесены в табл. 2.

Строим план сил. В соответствии с векторным уравнением откладываем отрезки, соответствующие векторам \(\overrightarrow{G_2}, \overrightarrow{G_3}, \overrightarrow{F_{u_3}}, \overrightarrow{F_{u_4}}, \overrightarrow{R_{12}^r}, \overrightarrow{R_{63}^r}, \overrightarrow{R_{63}^u} \). Векторы можно откладывать в любом порядке, но обязательно начать построение с вектора \(\overrightarrow{R_{63}^r} \), а закончить построение вектором \(\overrightarrow{R_{12}^r} \). Затем из начала вектора \(\overrightarrow{R_{63}^r} \) проводим направление вектора \(\overrightarrow{R_{63}^u} \), а из конца вектора \(\overrightarrow{R_{12}^r} \) проводим направление вектора \(\overrightarrow{R_{12}^u} \). Пересекаюсь, эти направления замыкают многоугольник сил. Измеряя на плане сил отрезки, соответствующие векторам \(\overrightarrow{R_{12}^r}, \overrightarrow{R_{12}^u}, \overrightarrow{R_{63}^r}, \overrightarrow{R_{63}^u}, \overrightarrow{R_{63}^u} \) и умножая их на масштаб \(\mu_p \), получим значение этих реакций. Данные занесены в табл. 2.

Таблица 2

<table>
<thead>
<tr>
<th>Обозначение силы</th>
<th>(G_2)</th>
<th>(G_3)</th>
<th>(F_{u_3})</th>
<th>(F_{u_4})</th>
<th>(R_{12})</th>
<th>(R_{63}^r)</th>
<th>(R_{63}^u)</th>
<th>(R_{63}^u)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Величина силы, (H)</td>
<td>19,6</td>
<td>19,6</td>
<td>10,7</td>
<td>4,8</td>
<td>27</td>
<td>12,5</td>
<td>2,66</td>
<td>12</td>
</tr>
<tr>
<td>Отрезок на плане, мм</td>
<td>39</td>
<td>39</td>
<td>21</td>
<td>10</td>
<td>54</td>
<td>25</td>
<td>5</td>
<td>24</td>
</tr>
</tbody>
</table>
3.3. Силовой расчет начального механизма

3.3.1. Определение силы тяжести звена:

\[G_i = m_i \cdot g = 1,5 \cdot 9,8 = 14,7 \text{ Н} \] .

3.3.2. Определение силы инерции:

\[F_{\text{ин}} = m_i \cdot a_{\text{ин}} = 1,5 \cdot 2,95 = 4,43 \text{ Н} \] .

Сила инерции направлена в противоположную сторону ускорению \(a_{\text{ин}} \).

Построим начальный механизм в масштабе \(\mu_i\).

Покажем все действующие на него силы, неизвестную реакцию \(R_{63} \) и уравновешивающий момент \(M_{66} \).
3.3.3. Найдем величину уравновешивающего момента M_{ϕ}. Запишем уравнение моментов всех сил относительно точки O_1.

$$\sum_{i=1}^{n} M_{O_1} = 0 ; \quad R_{21} \cdot h_8 + F_{\phi} \cdot h_7 - M_{\phi} = 0 .$$

Уравновешивающий момент M_{ϕ} равен:

$$\dot{I}_{\phi} = R_{21} \cdot h_8 + F_{\phi} \cdot h_7 = 12,5 \cdot 0,15 + 14,7 \cdot 0,04 = 2,46 \dot{I} \cdot i .$$

Здесь $R_{21} = -R_{12}$.

Длины плеч h_7 и h_8 измерены на расчетной схеме и умножены на масштабный коэффициент $\mu_i = 0,005 - \frac{i}{ii} .

h_7 = 8 \cdot 0,005 = 0,04i ; \quad h_8 = 30 \cdot 0,005 = 0,15i .

Тогда уравновешивающая сила равна:

$$F_{\phi} = \frac{\dot{I}_{\phi}}{I_{1A}} = 2,46 \cdot 0,15 = 16,42 \dot{I} .$$

3.3.4. Найдем реакцию R_{61}. Составим векторное уравнение равновесия всех сил, действующих на начальный механизм.

$$\sum_{i=1}^{n} \overrightarrow{F}_i = 0 ; \quad \overrightarrow{F}_{\phi} + \overrightarrow{R}_{21} + \overrightarrow{F}_{\phi} + \overrightarrow{R}_{61} = 0 .$$

Выберем масштаб плана сил $\mu_F = 0,5 - \frac{j}{ii}$.

Вычислим величины отрезков, соответствующих векторам сил. Данные занесем в табл. 3:

<table>
<thead>
<tr>
<th>Обозначение силы</th>
<th>G_1</th>
<th>F_{ϕ}</th>
<th>R_{21}</th>
<th>R_{61}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Величина силы, Н</td>
<td>14,7</td>
<td>4,43</td>
<td>12,5</td>
<td>21,5</td>
</tr>
<tr>
<td>Отрезок на плане, мм</td>
<td>29</td>
<td>9</td>
<td>25</td>
<td>43</td>
</tr>
</tbody>
</table>

Таблица 3

Строим план сил. В соответствии с векторным уравнением откладываем отрезки, соответствующие векторам \overrightarrow{G}_1, $\overrightarrow{F}_{\phi}$, \overrightarrow{R}_{21}. Векторы можно откладывать в любом порядке. Соединяя начало первого вектора и конец последнего, получим многоугольник сил и отрезок, определяющий реакцию R_{61}. Измеряя его длину и умножая на масштаб μ_F, получим величину реакции R_{61}. Данные занесены в табл. 3.
4. Определение уравновешивающей силы с помощью рычага Жуковского Н.Е.

4.1. Уравновешивающую силу F_{yp} приложим в точке A перпендикулярно кривошипу O_1A.

4.2. План скоростей повернем на 90°. В соответствующих точках плана скоростей приложим векторы сил, сохраняя их направления, каждый момент инерции M_{x2}, M_{x3}, M_{x4} заменим парой сил. Силы проводятся из кинематических пар звена под углом 90° так, чтобы эти силы вращали звено в ту же сторону, что и соответствующий момент инерции:

$$ F_2 = F_2' = \frac{M_{u2}}{AB} = \frac{0,26}{0,2} = 1,3H ; $$

$$ F_3 = F_3' = \frac{M_{u3}}{BO_2} = \frac{1,54}{0,185} = 8,32H ; $$

$$ F_4 = F_4' = \frac{M_{u4}}{BC} = \frac{0,11}{0,5} = 0,22H . $$

и каждую силу перенесем на план.

4.3. Составим уравнение моментов всех сил относительно полюса p_1:

$$ \sum_{i=1}^{n} M_{p_1} = 0 ; $$

$$ G_1 \cdot h_5 - F_{yp} \cdot p_1 \cdot a + G_3 \cdot h_1 + G_4 \cdot h_1 + G_2 \cdot h_2 + F_{u2} \cdot h_4 + F_{u3} \cdot h_5 + F_{u4} \cdot h_6 + F_{u5} \cdot p_1 \cdot c - F_2 \cdot h_7 - $$

$$ - F_2' \cdot h_8 + F_3 \cdot p_1 \cdot b - F_4' \cdot h_9 + F_4 \cdot h_9 - F_4 \cdot p_1 \cdot c = 0 . $$
Решая уравнение, получим:
\[F_{yp} = \frac{14,7 \cdot 35 + 19,6 \cdot 13 + 49 \cdot 13 + 19,6 \cdot 48 + 10,7 \cdot 20 + 4,8 \cdot 22 + 17,25 \cdot 96 + 16,25 \cdot 130 - 1,3 \cdot 16 - 1,3 \cdot 30 + 8,32 \cdot 140 - 0,22 \cdot 64 + 0,22 \cdot 37 - 40 \cdot 130}{140} = 16,67 \, H. \]

Длины всех плеч измерены на расчетной схеме.

Таким образом, с помощью теоремы Жуковского Н. Е. можно:
1. Определить уравновешивающую силу \(F_{old} \), не проводя силового расчета;
2. Проверить значение уравновешивающей силы \(F_{old} \), полученной из силового расчета. Погрешность расчетов составляет:
\[\Delta \% = \frac{F_{old} - F_{old}}{F_{old}} \cdot 100\% = \frac{16,67 - 16,42}{16,67} \cdot 100\% = 1,5\%. \]

Погрешность не должна превышать 20%.

Рычаг Жуковского \(\mu_r = 0,0067 \cdot \frac{i}{\bar{n}} \)
5. Правила оформления расчетно-графической работы

5.1. Пояснительная записка.
Пояснительная записка - документ, содержащий описание исследуемого механизма, обоснования принятых при его разработке методов исследования и технических решений, все виды расчетов, схемы, таблицы, поясняющие расчеты и принятые решения.
Пояснительная записка расчетно-графической работы должна содержать:
1. Титульный лист (приложение 1);
2. Задание на расчетно-графическую работу;
3. Введение;
4. Содержание;
5. Структурный анализ механизма;
6. Кинематический анализ механизма;
6.1. Определение скоростей точек звеньев и угловых скоростей звеньев;
6.2. Определение ускорений точек звеньев и угловых ускорений звеньев;
7. Силовой расчет механизма;
8. Расчет уравновешивающей силы с помощью рычага Жуковского Н.Е..

5.2. Общие требования к оформлению пояснительной записи.
Текстовые документы расчетно-графической работы должны быть сброшюрованы по ГОСТ 2.301-68. Титульный лист выполняется на бумаге формата А4 по ГОСТ 2.301-68 и должен соответствовать указанному ниже образцу. Текст записи должен быть набран в текстовом редакторе Microsoft Word. Шрифт пояснительной записи - Times New Roman, размер шрифта 14 с полуторным межстрочным интервалом. Выравнивание - по ширине. Ориентация страницы - книжная.
Листы записи должны иметь рамку и штамп с основной надписью.
Текст записи пишется в рамку, образованную полями: левое – 20 мм, правое – 5 мм, верхнее – 5 мм, нижнее – 5 мм. Основную надпись на листах пояснительной записи выполняют по ГОСТ 2.104-68. и ГОСТ 2.105-95. Примеры заполнения основной надписи первого листа пояснительной записи расчетно-графической работы и основной надписи последующих листов даны ниже (приложение 2).
Заголовки всех разделов выделяют в отдельную строку и выполняют прописными буквами. Все разделы, подразделы, пункты, подпункты нумеруют и оформляют согласно требованиям ГОСТ 2.105-75 следующим образом, например: 1.3.4.6 - где 1 - номер раздела, 3 - подраздела, 4 - пункта, 6 - подпункта. Разделы «Введение», «Задание», «Содержание» - не нумеруют.
Очередной раздел необходимо начинать с новой страницы. В конце подразделов результаты расчетов надо свести в таблицы, где привести значения, полученные в результате аналитических и графических расчетов.
Раздел «Содержание» должен содержать названия разделов и подразделов с указанием страниц.

5.3. Правила оформления формул.
1. Нумеруют только те формулы, на которые имеются ссылки по тексту. Номер формулы заключается в круглые скобки с выравниванием по правому краю.
2. Расчетные формулы записывают сначала в символном виде, затем в них подставляют цифровые значения физических величин и, наконец, приводят окончательный ответ с обязательным указанием размерности, например,

\[V_A = \omega_1 \cdot O_1 A = 30 \cdot 0,02 = 0,6 \text{ м} / \text{s} \]
5.4. Правила оформления графических построений.

1. Все рисунки и графики должны быть озаглавлены и пронумерованы по ГОСТ 7.32-2001.
2. Графические построения следует выполнять карандашом в соответствии с ГОСТ 2.105-95 и ГОСТ 2.106-96.
3. Каждый лист должен иметь основные надписи по ГОСТ 2.104-68 (приложение 2).
4. Все построения необходимо снабжать соответствующей им надписью и масштабным коэффициентом.
5. Масштабные коэффициенты построений следует выбирать так, чтобы площадь листа была максимально заполненной.
6. Кинематическая схема механизма:
7. 1. В расчетном положении кинематическую схему механизма надо выполнять основными линиями, указать масштаб;
8. 2. Кинематические пары следует обозначать заглавными буквами латинского алфавита, центры масс звеньев буквами «S» с индексами, соответствующими номеру звена;
9. 3. Для расчетного положения механизма указывать номера звеньев и направления угловых скоростей и ускорений, полученные на основании расчетов.
10. Плоскости скоростей и ускорений:
11. 1. Концы векторов скоростей (ускорений) точек механизма следует обозначать малыми буквами латинского алфавита в соответствии с буквами на плане механизма;
12. 2. Направления абсолютных и относительных скоростей (ускорений) надо показывать стрелками.
13. Плоскости сил:
14. 1. Группы Ассура следует выполнять в масштабе;
15. 2. Векторы сил необходимо изображать в истинном направлении;
16. 3. Каждый вектор надо снабжать соответствующим обозначением;
17. 4. Плоскости сил необходимо строить в масштабе.
<table>
<thead>
<tr>
<th>№</th>
<th>Вид движения</th>
<th>Скорость</th>
<th>Ускорение</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Поступательное (ползун по стойке)</td>
<td>Все точки звена имеют одинаковую скорость \vec{V}_A, вектор, который направлен вдоль траектории движения точки A. $\vec{V}_A \parallel X-X$</td>
<td>Все точки звена имеют одинаковые ускорения \vec{a}_A. Если вектор ускорения \vec{a}_A направлен в сторону \vec{V}_A, то движение равноускоренное, если вектор ускорения \vec{a}_A направлен в противоположную сторону \vec{V}_A, то движение равнозамедленное. $\vec{a}_A \parallel X-X$</td>
</tr>
</tbody>
</table>
| 2 | Вращательное вокруг неподвижной оси (кривошип или коромысло относительно стойки) | Скорость точки A $\vec{V}_A = \omega_1 \cdot OA$ | Полное ускорение точки A $\vec{a}_A = \vec{a}^n_A + \vec{a}^r_A$
Нормальное ускорение $a^n_A = \omega_1^2 \cdot OA$
Вектор \vec{a}^n_A направлен по радиусу AO к центру вращения O.
$\vec{a}^n_A \parallel OA$.
Касательное ускорение $a^r_A = \varepsilon_1 \cdot AO$
Вектор \vec{a}^r_A направлен перпендикулярно AO в сторону углового ускорения ε_1
$\vec{a}^r_A \perp OA$ |
| 3 | Звено совершает плоскопараллельное движение (шатун) | Скорость точки B $\vec{V}_B = \vec{V}_A + \vec{V}_{BA}$ | Ускорение точки B $\vec{a}_B = \vec{a}^n_B + \vec{a}^r_B$
Относительное ускорение $\vec{a}^n_{BA} = \vec{a}^n_{BA} + \vec{a}^r_{BA}$
Нормальное ускорение $a^n_{BA} = \omega_2^2 \cdot AB$
Вектор \vec{a}^n_{BA} направлен параллельно AB (от точки B к точке A)
$\vec{a}^n_{BA} \parallel BA$
Касательное ускорение $\vec{a}^r_{BA} = \varepsilon_2 \cdot AB$
Вектор \vec{a}^r_{BA} направлен перпендикулярно AB
$\vec{a}^r_{BA} \perp BA$ |
Рекомендуемая основная литература

Рекомендуемая дополнительная литература

1. Заблонский К.И. Теория механизмов и машин. Киев: Высшая школа, 1989.

Содержание

1. Структурный анализ механизма ________________________________ 4
2. Кинематический анализ механизма _______________________________ 6
 2.1. Определение скоростей точек звеньев и угловых скоростей звеньев 6
 2.2. Определение ускорений точек звеньев и угловых ускорений звеньев 8
3. Силовой расчет механизма ________________________________ 13
 3.1. Силовой расчет последней группы Ассура вида ВВП 13
 3.2. Силовой расчет предпоследней группы Ассура вида ВВВ 14
 3.3. Силовой расчет начального механизма 17
4. Определение уравновешивающей силы с помощью рычага Жуковского Н.Е. 19
5. Правила оформления расчетно-графической работы 22
6. Приложение 1. Образец оформления титульного листа 24
7. Приложение 2. Образец выполнения основных надписей на текстовых и чертежных документах 25
8. Приложение 3. Расположение схем и планов на формате А1 27
9. Приложение 4. Основные формулы для определения скоростей и ускорений точек звеньев 28
10. Рекомендуемая литература 29